

Smarter Work Zones / SHRP2 Demonstration WorkshopTennessee Project Coordination Using WISE

Presentation by Sabya Mishra and Mihalis Golias

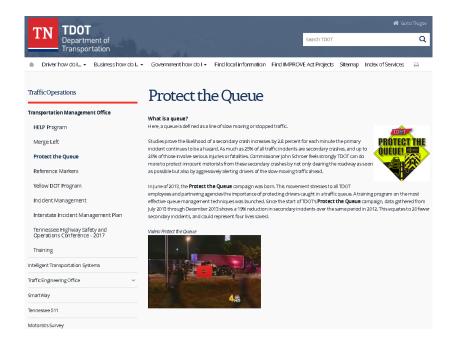
September 20, 2017

Outline

- Motivation
- Unfolding WISE-TN Pilot View
- Data Collection
- Proof-of concept runs
- Challenges and Path Forward

Motivation

Existing processes, challenges, and WISE pilot



Motivation (1)-Existing processes

- Work zone sequencing is a complex process
- Current work zone planning and operation enhancement programs
 - Lane closure decision support system
 - Protect the queue program

Motivation (2)- Challenges

- Need in Tennessee for coordinating work zone (WZ) projects
 - Type: construction, maintenance, utility, etc.
- TDOT selected EDC-3 Smarter Work Zones as a initiative to help stimulate and support the improvement of work zone planning.
- Coordination between state versus local work zones
 - Large versus small work zones
 - Spatial context
 - Facility types
 - Budget
 - Duration
- In TN
 - Approximately 500 WZ/ year on interstate/state routes
 - Highest type of WZ are construction

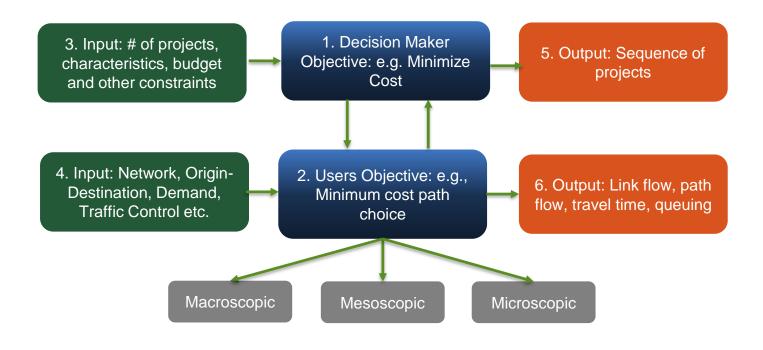
Motivation (3)-Vision

- Significant projects which are anticipated to cause sustained work zone impacts
- Currently revising the TDOT Work Zone Safety Mobility Manual and reformatting the Transportation Management Plan Process (TMPs)
- Optimal multiple project coordination has reduce work zone related crashes
- Obtain three pillars of benefit
 - Social
 - Economic
 - Environmental

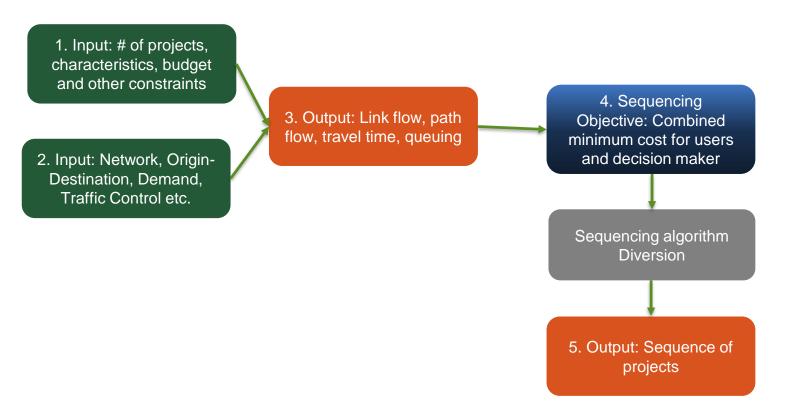
Motivation (4)- Interest in WISE Pilot

- Pilot activities in WISE
 - Sequencing using network design principles
 - Diversion using DTA
 - Use of both planning and operational features of WISE
 - Value in practice
 - Efficiency, robustness, and effectiveness

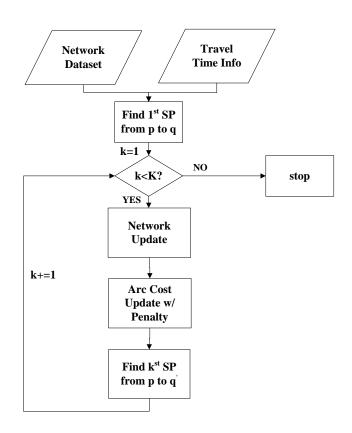
WISE Approach


Algorithms in WISE: planning and operation

Network Design Problem


Time depended decision making

Network Design Problem


WISE Implementation

Sequencing Algorithm and Diversion

- WISE Scheduling Engine
 - Heuristic method, Tabu search to find optimal sequence of projects with defined starting month times, and construction mode (daytime, night time, or both)
- K-SP: Network Wide Travel Time
 - k-shortest path (k-SP) algorithm to find alternative paths where travel time is less than the path going through the work zone *(b)
 - Assign diverge traffic from the work zone path to K-SP by equilibrium method
 - Evaluate network-wide travel time accounting for traffic diversion

Sequencing Algorithm

Step 1: Initialization

Set each project an initial feasible schedule.

Step 2: Neighborhood search

For in each construction mode: daytime only, nighttime only, and both:

For in each project:

For in each month:

If schedule project to start at month with a mode of is feasible:

Do traffic diversion.

Compute the objective function (work zone cost)

If it results in a reduced objective, schedule project starting from month with construction mode, update the corresponding solution;

Add triple into Tabu list, and restrict this solution in the next few iterations (user defined).

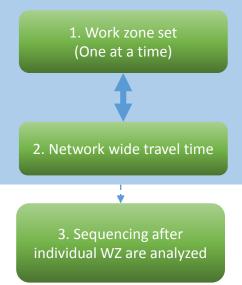
Otherwise: continue

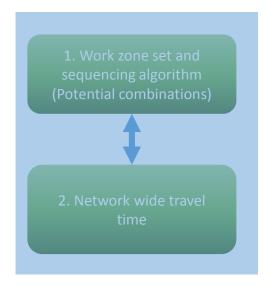
Step 3: Check stop criteria

Stop if a predefined maximal iteration number is reached, or in continuous 5 iterations it does not find a solution with improved objective.

• Step 4: Return the solution with the minimum objective that has been found.

Complementary Comments (1)


- Compare with other methods, such as (can be more than the list below)
 - Exact algorithms in cases of predetermined diversion strategies
 - Distributed Genetic Algorithm (GA)
 - Simulated annealing
 - Particle swarm optimization
 - Simulation based optimization
- Consideration of combinatorial projects in place?
 - Improve the method computing traffic diversion;
 - Improve K-SP;
- Automate scheduling and traffic impact assessing procedure, batch run DTA?



Complementary Comments (2)

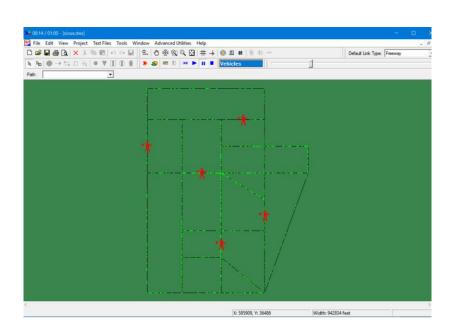
Combinatorial work zone sequencing

Current, simplistic, and far from reality

Improved, relatively complex and realistic

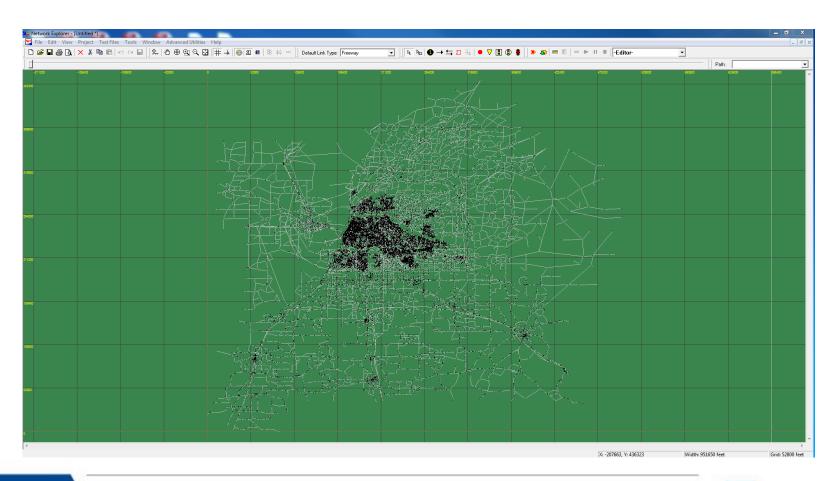
Software structure & design

Factors implemented in WISE

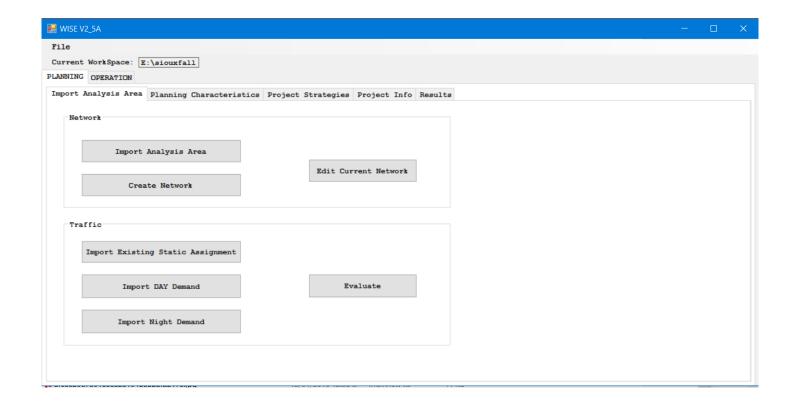

Complementary Comments

Our numerical experiments

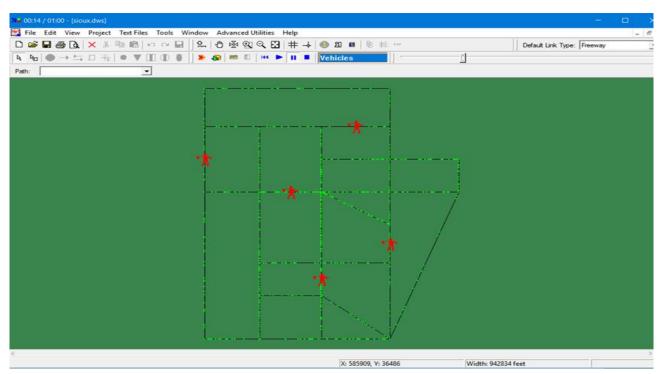
Siouxfall network (completed)

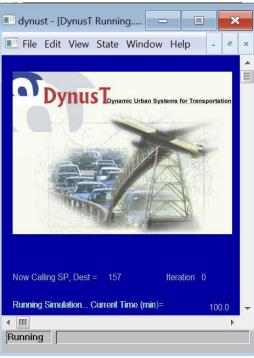


Memphis reduced network (Completed)



Memphis Full Network





WISE Components: Basic GUI

WISE Components: Nexta/DynusT

Development environment

- Programming language:
 - C# for Interface of WISE
 - Python for modules including
 Demand Converter, Static Assignment, Scheduling Algorithm
 - C++ for NEXTA, traffic network editor and visualizer
 - Fortran for DynusT, dynamic traffic assignment engine

Complementary Comments

- Re-design structure, thinking from scratch
 - standalone to connect with other traffic assignment models or
 - a plugin component which can be loaded to other software
- Incorporate programming to one development environment
- Connect WISE with NexTA-DTALite or any one programing language environment

Engineering dimension

Factors implemented in WISE

Complementary Comments

Factors implemented in WISE

- Factors for work zone already considered in WISE
 - General construction cost
 - Daytime, nighttime, and both
 - Precedence sequence
 - Seasonal factor
 - Demand reduction factor

More factors to be taken into account

- Other construction cost components not defined as input in WISE
 - Labor
 - Materials tools
 - Schedule conflict
 - Accident factor and cost
- Traffic impacts at the project level not included in objective function
 - Queues at local project
 - Reduction of travel speed locally
 - Increase of traffic delays locally

WISE Software Review Summary

- Improvement in four dimensions
 - Inputs and output data flow in NexTA
 - Make it easier for practitioners
 - Importing features from existing DOT/MPO data formats
 - Standards for signal and control features
 - Improved processes
 - Engineering dimensions
 - Algorithms
 - Improved algorithms for both project sequencing, and traffic assignment
 - Consider combinatorial problems
 - Exact methods for sequencing rather than heuristics
 - Consider larger number of work zones
 - GUI
 - User friendly GUI for practitioners

Initial Recommendations

- enhance GUI
 - (for wider use make it practitioner friendly)
- data input/output
 - (provide example data structure)
- analyze larger number of WZ projects
 - (test other sequencing algorithms)
- capacity to analyze larger network
 - (for planning enhance traffic assignment algorithm)
- support other DTA platforms
 - (direct WISE to other DTA platforms)

Future considerations

- Data Preparation
 - Identify work zones to be analyzed
 - State, MPO and City (all have different databases!)
 - Sub-area selection if the network is bigger
 - Prepare standardized sdata
- WISE uses DynusT for DTA
 - Provide flexibility to include other software
- Significant effort needed mesoscopic model calibration
- Detail construction cost components not defined as input in WISE
 - Labor, materials, tools, schedule conflict, and other components

Acknowledgement

- Tennessee Department of Transportation
- City of Memphis

Thank you and Questions

Contact Information

Brad Freeze
TN Dept. of Transportation
Phillip.B.Freeze@tn.gov

Mihalis M. Golias University of Memphis mgkolias@memphis.edu Sabya Mishra
University of Memphis
smishra3@memphis.edu

